Potential Impact of GTL Commercialization on the Fuels and Specialty Product Markets

NPRA Annual Meeting
March 21, 2006
Salt Lake City, Utah

AM-06-36

Iraj Isaac Rahmim, PhD
E-MetaVenture, Inc.
Houston, Texas
Introduction

- Recent interest in GTL technology and its products
- Units to come on line in the next 5 years
- Examination of the likely impact of key GTL products in their respective markets
 - Diesel
 - Lubes
 - Waxes
Key GTL Steps

- Production of synthesis gas ("syngas"):
 - Partial oxidation: \(\text{CH}_4 + \text{O}_2 \rightarrow \text{CO} + 2 \text{H}_2 \) (exothermic)
 - Steam reforming: \(\text{CH}_4 + \text{H}_2\text{O} \rightarrow \text{CO} + 3 \text{H}_2 \) (endothermic)

- Fischer-Tropsch synthesis
 - \(\text{CO} + 2\text{H}_2 \rightarrow \text{CH}_2-- + \text{H}_2\text{O} \) (very exothermic)
Sample GTL Product Slate

50 MBD Plant

<table>
<thead>
<tr>
<th>Product</th>
<th>No HC (MBD)</th>
<th>With HC (MBD)</th>
<th>Comments</th>
</tr>
</thead>
</table>
| **LPG** | 1 | 2 | ● Similar to other plant (LNG, refinery) LPG
| | | | ● Can be co-processed and marketed with them |
| **Naphtha** | 4 | 13 | ● Straight chain paraffinic
| | | | ● Near zero sulfur
| **Diesel** | 25 | 35 | ● High cetane
| | | | ● Near zero sulfur
| **Lubes** | 15 | <1 | ● High grade
| | | | ● Low volatility
| | | | ● Low pour point
| **Wax** | 5 | <1 | ● n-paraffins
| | | | ● High quality
| | | | ● Low viscosity
| | | | ● Low sulfur
| | | | ● Low density
| | | | ● Low aromatics
| | | | ● Preferred use: steam cracker feed
| | | | ● Low viscosity
| | | | ● Low sulfur
| | | | ● Low pour point
| | | | ● n-paraffins
| | | | ● High quality

E-MetaVenture, Inc.

2006 NPRA Annual Meeting AM-06-36
GTL Diesel Quality &
Effect of Regulatory Environment

- GTL diesel virtually sulfur-free and low aromatic (<5% PNA)

- Regulations on
 - “Alternative” fuel content (e.g., biofuels, GTL)
 - Fuel composition
 - Emissions

- Fuel composition regulations:
 - Tightening standards for light and heavy-duty diesel vehicles
 - Expected to continue to tighten
 - Sulfur, aromatics, PNAs
 - US, WE, Japan: sulfur down to 10-50 ppm
 - Developing world: mandates down to 200-1000 ppm
Emissions

- A number of studies demonstrated tailpipe emission benefits
 - Neat or in blends
 - Compared to both conventional as well as reformulated

- Typical examples of tailpipe emission results:
 - 40-50% reduction in HC, 9% in NOx, 30% in particulates when compared with low-sulfur refinery diesel
 - Benefits with current as well as new engine technologies (Euro-4 and Euro-5) using neat and blend GTL diesel

- Well-to-Wheel: no great benefit for GTL diesel
 - Shifts CO$_2$ emissions from auto to plants (away from population centers; potential for sequestration)
Additional Comments on GTL Diesel Quality

- Highly paraffinic ➔ typical cetane numbers in 70-80

- Lower density than refinery diesel
 - 0.77-0.80 Kg/L v. 0.83-0.85 Kg/L
 - ➔ Density premium
 - ➔ Perceived lower fuel efficiency (in MPG)

- Relatively poor cold-start; low lubricity

- A number of studies (90s) show a premium of 5-10 ¢/gal
GTL Diesel Supply Projections

- A large number of potential projects
- Only a small fraction are likely to be built short-term

- Qatar: self-described GTL capital
 - Oryx I: 2006 start up
 - Shell Pearl: 2009
 - ExxonMobil: 2011

- California Energy Commission estimate:
 - 2010: 75 MBD global GTL diesel capacity (seems low)
 - 2015: 388 MBD
 - 2020: 800 MBD

- Sasol Chevron estimate: 600 MBD by 2016-2019
Global middle-distillate market: 27 MMBD
Approx. 3% annual growth
14 MMBD automotive diesel
Growth Projections (1)

- Europe: increase in diesel-powered autos
 - Currently over 60% of auto sales in France and Austria
 - Emission mandates, jurisdictional tariff strategies, improved auto designs, increased low-emission fuel availability

- US: driven by commercial sector and tied to overall economy growth (average about 5% annual)
 - Light diesel vehicles 4% of total market
 - Regional and regulatory efforts are likely to increase diesel auto usage

- Asia-Pacific: rapid yet uncertain growth
 - China factor: 8-10% annual economic growth; loosely correlated to diesel fuel usage
Growth Projections (2)

- Globally: diesel powered autos at about 30%
 - Projected to grow to about 40% by middle of next decade
 - Followed by partial replacement with hybrids

- Overall:
 - Projected middle distillates demand to grow by 3% annual
 - To 44 MMBD in 2020
 - 22.5 MMBD automotive diesel

- Question: what is the potential impact of GTL on this market?
GTL Diesel v. Global Middle Distillates

- Small as fraction of total diesel supply (less than 3% by 2020)
- Unlikely to impact global market greatly
Potential Impact on Local Diesel Markets

- GTL supply could potentially form a significant portion of a region’s diesel
 - Example: Shell estimates one large GTL plant would fully satisfy the city of London and 10 plants would satisfy PADD V
- Possible to develop a critical mass of GTL diesel as blendstock for a small market
 - Example: Shell Bintulu has offered 30% Pura throughout Thailand
 - Also sold as blendstock in Greece, Germany, and South Africa
Likely GTL Diesel Scenario

- Pure GTL diesel would require separate infrastructure and auto modifications
 - Would take away key GTL benefit compared to many alternatives: compatibility with current fuels and systems

- In jurisdictions with very tight specifications, volume of GTL required would be very high

- Most likely use: as a premium blendstock to bring slightly off-spec diesel into compliance

- Competition:
 - HT in refineries, improvement in FCCs and other units
 - Biofuels (e.g., ethanol, methyl esters) are expected to grow in line with tax benefits and mandates
 - GTL diesel sulfur premium might erode
 - Some observers: GTL diesel premium will be primarily due to its high cetane and low aromatics (benefit for Europe, less so in US and Asia)
GTL Lubes Quality and Cost

- GTL lubes produced from isomerization of FT waxes
 - Virtually no sulfur, nitrogen, or aromatics
 - Narrow HC distribution
 - Excellent oxidation stability
 - Excellent volatility and pour point
 - Very high VI (140+)

- Studies suggest attractive economics for production
 - Manufacturing costs similar to Group I/II
 - Quality similar to other basestocks of 140+ VI
Lubes Markets (1)

- Basestock global market size ~ 800 MBD in 2005
 - Group I: 75%
 - Group II: 20%
 - Groups II+/III/IV: 5%

- Groups II+/III/IV expected to grow to >10% by 2015 (perhaps as much as 20% depending on automaker demands)

- Currently at “surplus quality” relative to technical demand
 - Complicated as basestock market is in great flux
 - Shifting quality and specifications likely to consume quality overhang
 - Group I capacity rationalizations continue in NA and WE
 - Triggered by Group II/III construction/expansions primarily in Asia and NA
 - Depends on efficiency and structure of plant
Lubes Markets (2)

- Slow overall growth
 - Rapid demand growth in developing regions (e.g., China, Brazil)
 - Decline in US, WE, Japan, Australia, New Zealand
 - Overall in 2004: 1.8% growth
 - Basestock movement from NA/WE to other regions

- Increased demand for high quality (Group III/IV)
 - Evolving industry standards for passenger car motor oils (GF-4 in effect; moving towards GF-5)
GTL Lubes Capacity Impact

- One world-scale GTL could produce as much as 15-30 MBD lube basestocks (8-15% of current Group II/II+/III/IV supply)
- Example: ExxonMobil Qatar project, announced in 2004, to produce 30 MBD lube basestocks
- Estimates and announcements: 50 MBD GTL lube basestock capacity by 2011
- Globally, possibility of at least 200 MBD of GTL lube basestocks by 2020
Likely GTL Lubes Scenario

- GTL economics primarily based on gas monetization to produce high quality diesel
 - historical F-T plants (Sasolburg and Segunda) make no lubes
 - Max lubes yields of 20-30% from key GTL plants?

 - *In reality:* All major GTL plants will include some product cracking

- Likely scenario in terms of impact of GTL on lubes markets:
 - GTL lubes will trigger shutdown of less efficient lube capacity
 - *Key:* manufacturing cost
 - Typically highest cost today are many Group I plants
 - Some of the lowest cost plants are Group II in US and Asia and Group III in Asia
GTL Wax Quality

- Unlike petroleum wax (mix of iso- & n-paraffins), today’s FT wax is primarily linear in the C_{20-100} range
 - Benefit in high melt applications
 - Require fractionation and blending to meet low and mid-melt applications

- Typically can produce only two wax grades (MPs) and blend to meet all other MPs

- Shell Bintulu and Sasol Secunda provide about 6% of worldwide waxes (low oil content, high MP)

- Oryx and other planned GTL projects
 - No plans announced to sell waxy F-T material or upgrade to finished wax
 - Tight wax markets may create opportunity
 - Possibility: softer wax than from current GTL units with oil content close to slack waxes
Global Wax Overview

- Total global wax capacity in 2005: approx. 10,900 MMlb (~103 MBD)
 - About 13% of the base oil market
 - Most produced from petroleum sources (lube refinery)
 - About 6% currently produced from Shell and Sasol GTL plants

<table>
<thead>
<tr>
<th>Types of Wax</th>
<th>Wt %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slack and Semi-Refined</td>
<td>29</td>
</tr>
<tr>
<td>Fully Refined</td>
<td>54</td>
</tr>
<tr>
<td>Microcrystalline</td>
<td>5</td>
</tr>
<tr>
<td>Petrolatum</td>
<td>4</td>
</tr>
<tr>
<td>Other</td>
<td>~2</td>
</tr>
<tr>
<td>From GTL</td>
<td>6</td>
</tr>
</tbody>
</table>

Sources: C. Garrigou. First ICIS-LOR Pan American Base Oils & Lubes Conference 2005 and in-house
Wax Supply

- Slack/unrefined wax considered lube refinery by-product
- Production depends on rates of other key products especially Group I base oils
 - Rationalizations in NA, Europe, Asia
 - Wax isomerization to base oils
- Production concentrated
 - 75% in 10 countries
- Over 1/3 of total wax production in Asia (especially refined)
- Companies: CNPC, XOM, Shell, Sasol are largest (55% of production)
- Overall cap. util. ~ 85%
 - High in NA, WE, Asia (~95%)

<table>
<thead>
<tr>
<th>Total Wax Production incl. GTL (2005)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>28</td>
</tr>
<tr>
<td>Latin America</td>
<td>5</td>
</tr>
<tr>
<td>Europe</td>
<td>18</td>
</tr>
<tr>
<td>Asia</td>
<td>35</td>
</tr>
<tr>
<td>FSU and Eastern Europe</td>
<td>11</td>
</tr>
<tr>
<td>ME/Africa</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL (MMlb/yr)</td>
<td>~9,300</td>
</tr>
</tbody>
</table>

Sources: Wax Data 2005 and 2006 and in-house
Wax Demand

- Refined waxes ~ 2/3 of market
- Approx ½ food grade
- Significant wax refining capacity in China
 - refined wax exported to North America

<table>
<thead>
<tr>
<th>Approximate Wax Demand by Region (2005)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>30</td>
</tr>
<tr>
<td>Latin America</td>
<td>14</td>
</tr>
<tr>
<td>Western Europe</td>
<td>17</td>
</tr>
<tr>
<td>Asia</td>
<td>23</td>
</tr>
<tr>
<td>FSU and Eastern Europe</td>
<td>12</td>
</tr>
<tr>
<td>Middle East/Africa</td>
<td>4</td>
</tr>
</tbody>
</table>

Sources: Wax Data 2005 and 2006 and in-house
Wax Trends—China

- Chinese crude production steady (3.4-3.6 MMBD) and projected to hold for ~15 years per upstream reserves estimate
 - Waxy/paraffinic

- Economic growth has led to 3-fold crude demand increase over the last 15 years
 - Import 40% of their crude (primarily ME, Russia)—less waxy
 - New refineries focus on transportation fuels
 - Some historical wax-producing refineries changing output and reducing/eliminating wax manufacture
 - Operational issues with imported crudes (?)

- Growth in wax demand (loosely correlated to economic growth of 8-10% annual) and end-use shift

- Result: less Chinese wax available for export
 - Trend expected to continue

Source: Amy A. Claxton of My Energy
Overall Wax Trends

- Relatively steady growth in global wax demand in the past 25 years
 - Expected to continue at approx. 3% annually
 - Regional and end-product shifts likely

- OVERALL:
 - Continued growth in demand
 - Reduction in supply of petroleum-derived waxes
 - Potential increased supply of natural waxes (e.g., soy, palm)
 - Opportunity for GTL to impact these trends
GTL Wax Supply and Demand

- The wax market is easily overwhelmed
 - Example: typical GTL plant can produce 500-1,000 MMlb/yr of high grade wax (if not hydrocracked)
 - 6-12% of total projected market
- One analysis (Shell): potentially as much as 4,400 MMlb/yr new wax by 2015 from GTL
- Another analysis (Kline & Co.): 1,000-1,500 MMlb/yr of FT wax might be needed by 2014 to keep balance
Likely GTL Wax Scenario

- Most GTL plants will hydrocrack their wax-range products into diesel and other light products.

- ~1/3 left for use/sale as slack wax or to isomerize into base oils.

- Can fine-tune wax produced in light of market:
 - Analysts expect GTL wax to fill high-end niche applications and possibly move into petroleum wax market space.
In Summary

- GTL is capable of producing high quality diesel as well as lubes and waxes

- GTL is unlikely to have a major impact on the global diesel markets
 - Can be a positive component in meeting high quality blend-stock demands

- GTL lubes and waxes can have a significant effect on the worldwide pool
Acknowledgments

- Ms. Amy Claxton of My Energy
- Ms. Barbara R. Shook of Energy Intelligence Group
- Dr. Carl J. Verbanic of Wax Data
Contact Information

Iraj Isaac Rahmim, PhD
E-MetaVenture, Inc.
P. O. Box 271522
Houston, Texas 77277-1522
USA
Telephone: USA (713) 446-8867
Email: iir@e-metaventure.com
www.e-metaventure.com